

CLIENTS

DSME

CERTIFICATIONS

ISO 9001 **AS 9100** PED **OSHAS 18001**

ISO 13485 ISO 17025

PONGSAN

LOCATIONS

Wachon Factory

Vacuum melting Casting Open die forging

Deokchon Factory

Machining Overlay welding

Sowol Factory

Radial forging Rolling Extrusion

Sangam Factory

Ring Rolling

KPC Metal

Address. » 249 Wacheonseo-gil, Wachon-myeon Gyeongsan-si, Gyeongsangbuk-do, 38412, South Korea

Tel. » 82-53-850-9200 Fax. » 82-53-853-6386 E-mail » kpcm@kpccorp.co.kr

URL » www.kpctitanium.com / www.kpcmetal.co.kr

KPC

Automated ball valve

Address. » 8 Ansim-ro 59 gil, Dong-gu, Daegu, 41081, South Korea

Tel. » 82-53-960-1500 » 82-53-963-6386 Fax. URL » www.kpccorp.co.kr

VELOX

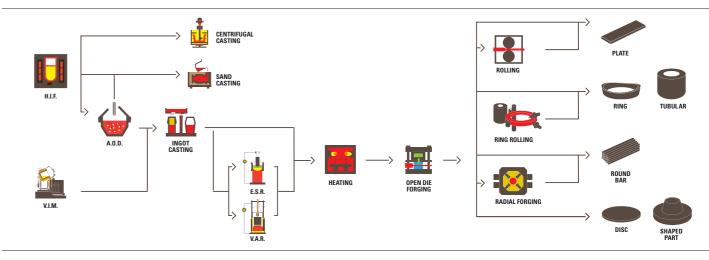
Forged Round Bar

» 22 Geumsong-ro 87-gil, Gyeongsan-si, Address. Gyeongsangbuk-do, 38412, South Korea

» 82-53-853-8877 Tel. » 82-53-964-3398 Fax. URL » www.velox.co.kr

Address. » 13F, Dongwha Bldg, 106 Seosomun-ro, Jung-gu Seoul, 04513, South Korea

» 82-2-2637-9188 Tel. » 82-2-2637-9118 Fax.


Our strength and competitiveness come from a vertically integrated production process, allowing us cost-saving, better quality control and responsive delivery time for our customers.

OUR MATERIAL LIST FOR AEROSPACE & DEFENSE SECTORS

Material	Chemical Composition	Mechanical Properties	Characteristics	A&D Applications
Ti 6Al-4V	AL 6%, V_4%, Fe_[Max.0.25%], O_[Max 0.2%], Ti_[balance]	Tensile Strength, 895 MPa Yield Strength, 828 MPa	High strength and toughness; light weight and superb corrosion resistance; the ability to withstand extreme temperatures	Aircraft turbine engine components, aircraft structural components, aerospace fasteners, high-performance automotive parts, marine application, combat vehicle armour.
Inconel 625	Ni_65.5%, Cr_22%, Mo_9%, Nb_3.5%	Tensile Strength, 830 MPa Yield Strength, 415 MPa	High strength, outstanding corrosion and oxidation resistance; high creep-rupture strength; oxidation resistant to 1800°F; seawater pitting and crevice corrosion resistant; immune to chloride ion stress corrosion cracking; non-magnetic	Various uses in the aerospace, petrochemical and chemical industries. Used for its high heat performance and corrosion resisting metals. Aerospace applications include aircraft ducting systems, aerospace Jet engine exhaust systems and engine thrust-reverser systems. Also used for offshore engineering, marine, thermal-processing, specialized seawater equipment and chemical process equipment.
Inconel 718	Ni_53%, Cr_19%, Fe_18%, Mo_3%, Nb_5%, Ti_1%	Tensile Strength, 1275 MPa Yield Strength, 1034 MPa	High strength age-hardenable alloy with good corroision resistance at high and low temperatures	Offshore and marine engneering, drilling equipment, pumps and valves
Invar 36	Ni_36%, Fe_(balance)	Tensile Strength, 462 MPa Yield Strength, 261 MPa	Alloy with lowest coefficient of thermal expansion from cryogenic temperature to about 200°C [390°F]	Tooling for aerospace composites, standards of length, measuring tapes and gauges, precision components as well as the low expansion component in bi-metal strip, in cryogenic engineering and for laser components.
Al 7050	Zn_6%, Mg_2.5%, Cu_2.3%, Zr_0.1%, Al_(balance)	Tensile Strength, 530 MPa(T6) Yield Strength, 455 MPa(T6)	Al 7050 is the premier choice for aerospace applications requiring the best combination of strength, stress corrosion cracking (SCC) resistance and toughness. It exhibits better toughness/corrosion resistance characteristics than alloy 7075	Mainly used for aircraft structural parts such as rivets and bolts.
Al 7175	Zn_5.6%, Mg_2.5%, Cu_1.6%, Cr_0.23%, Al_(balance)	Tensile Strength, 503 MPa(T74) Yield Strength, 434 MPa(T74)	Al 7050 is a high strength, heat treatable, forging alloy. High toughness and tensile strength; good machinability; average anodisation; acceptable resistance to atmospheric corrosion. Welding can be applied by the resistance welding process.	Typical applications include machined fittings as used in the aircraft industry.
Maraging Steel (C250)	Ni_18%, Co_8%, Mo_5%, Ti_0.4%, Al_0.1%	Tensile Strength, 1760 MPa Yield Strength, 1725 MPa	Excellent properties, workability and heat treatment characteristics. High yield and ultimate tensile strengths; high toughness, ductility and impact strengths; high fatigue strength, high compressive strength, hardness and wear resistance sufficient for many tooling applications	Critical parts in aerospace, structural, component and tooling applications. Widely used for missile and rocket motor cases, landing and takeoff gear, munitions, aerospace, extrusion tooling, die casting, high performance shafting, gears and fasteners
Maraging Steel (T250)	Ni_19%, Mo_3%, Ti_1.4%, AL_0.1%	Tensile Strength, 1760 MPa Yield Strength, 1726 MPa	High yield and ultimate tensile strengths; High toughness, ductility and impact strengths; High fatigue strength, high compressive strength, hardness and wear resistance; Sufficient for many tooling applications	Critical parts in aerospace, structural, component and tooling applications. Widely used for missile and rocket motor cases, landing and takeoff gear, munitions, aerospace, extrusion tooling, die casting, high performance shafting, gears and fasteners
15-5PH	Cr_15%, Ni_5%, Cu_4%, Fe_(balance)	Tensile Strength, 1070 MPa(H1025) Yield Strength, 1000 MPa(H1025)	Good mechanical properties at temperatures up to 600°F (316°C) Excellent longitudinal and transverse toughness Good in corrosive and high-pressure environments Equivalent weldability to 17-4 PH with greater toughness Low temperature hardening	Because of these outstanding characteristics, 15-5 PH is used to create gears, shafts, fittings, valves, cylinders, engine parts, and fasteners for a wide range of industries including aerospace, petrochemical and chemical.
17-4PH (SUS630)	Cr_16%, Ni_4.5%, Cu_3.5%, Fe_[balance]	Tensile Strength, 1069 MPa(H1025) Yield Strength, 1000 MPa(H1025)	Good resistance to stress corrosion cracking in the lower strength conditions; high strength, good corrosion resistance, good mechanical properties at temperatures up to 600°F (316°C), good toughness in both base metal and welds and short time, low-temperature heat treatments that minimize warpage and scaling.	Used for aerospace fasteners, chemical processing equipment, oil and petroleum refining equipment and nuclear components. General metalworking applications that call for precipitation-hardening stainless steel.
D6AC	Mo_1%, Mn_0.7%, Ni_0.5%, C_0.45%, V_0.1%, Fe_[balance]	Tensile Strength, 1590 MPa Yield Strength, 1310 MPa	High room and elevated temperature strength; High notch tolerance. Thermal expansion coefficients compatible with low alloy steel turbine casing materials. Lower design and operating risks.	Widely used in the filed of ship, vehicle, airplane, guided missile, weapons, railway, bridges, pressure vessel, machine tools, mechanical components with a bigger sectional size. Examples are mechanical gears, gear shaft, main axis, valve rod, connecting rod, bolt and nut.

OUR MANUFACTURING PROCESS

2

Space Launch Vehicle

Missile

> Forged Bar

» Ti-6AI-4V Material » AMS 4928 **Specification**

Manufacturing Process » Double Melting (VAR + VAR) - Forging - H.T.

Machining

» Combustion Tube Nozzle Usage

> Shape Forging

» Ti-6AI-4V Material **Specification** » AMS 4928

Manufacturing Process » Double Melting (VAR + VAR) - Forging - H.T.

Machining

» Missile Body, Cover & Warhead Usage

> Shape Forging

Material » F316L **Specification** » ASTM A182

Manufacturing Process » Melting - Forging - Shape Forging - H.T.

Usage » Liquid Fuel Burner

Material » Maraging C250 & T250 **Specification** » AMS 6512 & AMS 6519

Manufacturing Process » Double Melting (VIM + VAR) – Forging – H.T.

– Machining – (Back Extrusion – Flow Forming)

Usage » Missile Warhead

Material

» Duplex

Specification » JIS G4303 SUS329J1

Manufacturing Process » Melting – Forging – Shape Forging – H.T.

» Liquid Fuel Burner Usage

Material

Usage

» Maraging Steel C250 & T250

Specification

Manufacturing Process

» AMS 6512 & AMS 6519

» Double Melting (VIM + VAR) – Forging – H.T. Machining – (Back Extrusion – Flow Forming)

» Missile Case

» D6AC

» AMS 6431M

» Cr-Cu

» Melting – Forging – Shape Forging – H.T.

» Liquid Fuel Burner Usage

> Forged Ring

» AI7175 & AI7050 Material » AMS 4131 & AMS 4149

Manufacturing Process » Melting – Forging – Ring Foging – Ring Milling – H.T.

Usage

Material

Specification

Manufacturing Process

» Melting (VAR) – Forging – H.T. – Machining

- (Back Extrusion - Flow Forming)

» Front Cover, Rear Cover, Case Usage

Specification

» Skirty & Cylinder

KPC Metal I With Confidence, Service and Pride 4

Commercial Aircraft

Aero **Engine**

> Casting

Material **Specification**

Usage

» Boeing D33028-2

» Invar 36

Manufacturing Process

» Molding – Melting – H.T. – Shot Blast

» Lay-up Mandrel for Raked Wing Composite Part

Raked Wing Composite Part

> Forging

Material **Specification**

Manufacturing Process

Usage

- » Duplex, Inconel 625 & 718
- » AMS 5662/5663/5666 & AMS A276
- » Melting Forging (Ring Forging) – H.T. – Machining
- » Turbo Pump

Submarine

> Forging Material

» 1.4313 (F6NM)

Specification Manufacturing Process » UNS S41500 » Melting (VAR) - Forging - H.T. - Machining

Usage

» Shaft, Setting Ring & Bearing

> Forging

Material Specification » 1.4462 (F51) » UNS S31803

Manufacturing Process

» Melting (ESR or AOD) – Forging – H.T. – Machining

Usage

» Shaft, Radar, ESM Mast FDN, Bearing, Blank, etc.

